

4. 비저항

장비 구성

EX-5534 Resistivity

Resistance apparatus	EM-8812
Voltage Sensor	UI-5100
Patch Cord	SE-9750

Required: 850 Universal Interface PASCO Capstone

일반물리학및실험1 실험실습용 / 무단 전재 및 재배포 금지

실험 목표

서로 다른 금속의 비저항은 직경을 알고 있는 철사의 저항을 길이에 따른 함수로 나타냄으로써 구할 수 있다. 또한 길이가 고정된 철사의 저항은 단면적에 반비례함을 알 수 있다.

기본 이론

전류 (I)가 철사를 통하여 흐를 때, 저항이 R인 일정 길이의 철사를 통과하는 동안의 전압 강하(V)는 옴 의 법칙을 따른다.

$$V = IR$$

또는 R에 대하여 다음과 같이 나타낼 수 있다.

그러므로 비저항은 다음과 같다.

$$\rho = \frac{R}{L}A = \frac{R}{L}\pi \left(\frac{d}{2}\right)^2 \qquad \quad (3)$$

여기서 R/L은 R vs. L 그래프의 기울기이며, d는 철사의 직경이다.

[실험 9]

** 만일 마이크로미터(또는 디지털 캘리퍼)를 가지고 있지 않다면 다음 직경 데이터를 이용하여라. 황동 0.127cm 0.101cm (황동 외 다른 재질의 철사에도 이 값을 이용한다.) 0.082cm 0.051cm 황동의 4종

0.101cm

3. 비저항 장치에서, 레퍼런스 프로브 및 솔라이드 프로브를 정지(Park) 위치로 ወ동시킨다. 프로브는 좌 우로 가능한 한 멀리 떨어지도록 하여 시료 철사를 올려놓을 수 있어야 한다. 제자리에 들어맞도록 되어 있다.

4. 시료 철사를 통과시킬 수 있도록, 2개의 검정색 손잡이를 반시계 방향으로 돌려 클램프를 열어준다.

5. 구리(Copper) 철사를 장치에 설치한다. 흰색 정렬 해쉬 마크가 있는 곳에서 왼쪽 또는 오른쪽에서부 터 미끄러뜨려 넣는다. 그림 2는 철사를 통과시킨 오른쪽 클램프를, 그림 3은 왼쪽 클램프를 보여준 다. 오른쪽에서는 은색 클램프(검정색 손잡이가 달린)의 먼 쪽에 있으나, 왼쪽에서는 철사가 클램프의 가까운 쪽에 있는 것을 볼 수 있다. 이는 클램프를 조일 때 철사가 휘는 것을 막아준다.

그림 2. 왼쪽 클램프

그림 3. 오른쪽 클램프

6. 검정색 손잡이를 시계 방향으로 돌려 클램프를 조인다.

7. 레퍼런스 프로브를 0 cm 눈금이 있는 곳에 위치시키고, 슬라이더 프로브를 5cm 눈금이 있는 곳에 위치시킨다.

실험 방법

1. Capstone 화면 왼쪽의 도구 막대에서 신호 발생기(Signal Generator) 창을 열어, 850 Output 1을 DC 전압 2.0V로 설정한다. ON 버튼을 눌러 신호 발생기를 켜준다. ※ Overcurrent 경고가 뜰 경우 Offset and limits 창에서 Current limit을 1.5A로 상향시키고 DC 전압을 1V로 낮춘 후 진행한다 ※

2. Capstone 화면 왼쪽의 도구 막대에서 데이터 요약(Data Summary) 창을 열어, Voltage, ChA 행의 오 른쪽 상단의 톱니바퀴 모양 아이콘을 클릭한다. 게인(Gain)이 1000x로 설정되어 있어야 한다. 흰색 삼 각형 화살표를 클릭하여 1000x를 선택한 다음, 확인(OK)을 클릭한다.

3. 비저항 장치의 슬라이더 프로브를 5.0cm 위치에 오도록 이동시킨다.

4. Data 탭을 열어준다. 신호 발생기를 끌 것인지 묻는 팝업창이 뜨면, Leave On을 클릭한다.

5. 화면 좌측 하단의 RECORD 버튼을 클릭한다. 측정값이 안정될 때까지 몇 초간 기다린 뒤 STOP 버튼 을 클릭한다.

6. Data 탭에서, 맨 아래 상자의 저항은 R=V/I 식으로부터 계산된 값이다. V와 I는 평균값으로 상단의 2 개의 상자에 나타나있다. Different Metals 표의 첫 번째 행에, 측정된 저항을 입력하고, 철사의 길이 5.0cm를 입력한다.

7. 슬라이더 위치를 10.0cm, 15.0cm, 20.0cm, 24.0cm로 바꾸어 과정 5<mark>와 6을 반복한다.</mark> 이때 전극이 잘 맞닿아 있는지 확인하면서 진행한다

8. 데이터 요약(Data Summary) 창에 5개의 시행(Run)이 나타날 것이다. 마지막 시행(Run #5)을 클릭한 뒤 이름을 Copper로 변경한다. 페이지 하단에 있는 Delete Last Run 아이콘 옆의 흰색 삼각형 화살 표를 클릭한 다음 나머지 시행을 모두 삭제한다.

일반물리학및실험1 실험실습용 / 무단 전재 및 재배포 금지

9. 구리 철사를 알루미늄 철사로 교체한다. 알루미늄 철사는 밝은 회색의 무게가 가벼운 철사이다. 과정 5~8을 반복하고, 시행의 이름을 Aluminum으로 변경한다. Copper 시행과 Aluminum 시행을 제외한 나 머지 시행을 모두 삭제한다.

10. 강철과 니크롬 철사를 이용하여 과정을 반복한다. 단, 과정 2로 돌아가서 게인(Gain) 설정을 10x로 바꾸어주어야한다.

종류	구리	황동	알루미늄	니크롬	강철
게인	1000	100	1000	10	10

11. 1.0 mm 직경의(두 번째로 굵은) 황동 철사를 이용하여 과정을 반복한다. 단, 과정 2로 돌아가서 게 인(Gain) 설정을 100x로 바꾸어주어야 한다. 24cm에서 측정을 수행한 다음, 이전과 마찬가지로 Different Metals 표에 측정된 저항 값을 입력하고, 또한 Brass Wires 표의 1mm 행에도 이 값을 입

력한다.

12. 다른 세 개의 황동 철사를 이용하여 과정을 반복한다. 단, 24cm 위치에서만 측정한 다음, 이 값을 Brass Wires 표에 입력한다.

저항측정

구리, 강철, 니크롬, 알루미늄 -5,10,15,20,24cm 길이 저항 측정 황동 길이 24cm - 0.127cm, 0.101cm, 0.082cm, 0.051cm 직경 저항 측정

실험 분석

[분석 1] 금속의 종류에 따른 비저항(Resistivity of Different Metals)

1. Graph 탭에서 저항(Resistance) vs. 길이(Length) 그래프를 확인한다. 그래프 도구 막대에서 Run Select 아이콘 <u> </u>검정색 삼각형 화살표를 클릭하여 Copper 시행을 선택한다.

2. 그래프 도구 막대 가장 왼쪽에 있는 Scale to Fit ☑ 아이콘을 클릭하여 그래프의 스케일을 맞추어 준다.

3. Curve Fit 💉 아이콘 옆의 검정색 삼각형 화살표를 클릭하여 선형 맞춤(Linear)을 선택한다. 그래프 영 역의 아무 위치를 클릭하여 검정색 상자를 없앤다. Linear 상자를 마우스 오른쪽 클릭한 다음 Show Uncertainty 항목을 체크한다.

4. R vs. L 그래프의 기울기 m 값을 Resistivity 탭에 있는 Different Metals 표의 R/L 열에 기록한다. 대 부분의 경우 기울기의 불확도(Uncertainty)는 1% 미만이다.

일반물리학및실험1 실험실습용 / 무단 전재 및 재배포 금지

5. 다른 금속에 대해서도 각각 분석 과정을 반복한다.

저항 vs. 길이 그래프 예시 - Copper

6. 페이지 왼쪽의 도구 막대에 있는 Calculator 창을 열어 행 6의 ρ식이 기본 이론의 식(3)과 일치하는지 확인한다. 숫자 "10" 항은 mm2(mΩ)/cm 단위를 (μΩ)cm로 바꾸어주기 위한 항이다. Calculator 창을 닫는다.

7. 계산된 ρ값은 Resistivity 탭에 있는 Different Metals 표의 ρ열에서 확인할 수 있다. 니크롬을 제외하 면, 불확도의 주요 원인은 직경의 측정에 있다. 0.01mm를 읽을 수 있는 마이크로미터 또는 디지털 캘리퍼를 이용하여 이를 측정했다면, ρ의 불확도는 약 1%이다. 니크롬은 데이터의 산포에 의하여 R/L 의 불확도가 더 크게 나타날 수 있다.

8. Different Metals 표의 Resistivity 열의 값은 제조사에서 제공한 값이 입력되어 있다. 괄호 안의 숫자 는 불확도를 나타낸다. 예를 들어, 1.8(1)은 1.8 ±0.1 을 의미한다. 따라서 괄호 안의 불확도는 마지막 자릿수의 숫자를 뜻한다. 이 불확도는 금속 철사의 불순물 합금 정도에 의한 것으로, 실제 비저항은 정밀한 재료 성분에 의존한다.

[분석 2] 단면적이 저항에 미치는 영향(Dependence of Resistance on Cross-sectional Area)

1. Area Dependence 탭에서 저항(Resist) vs. 1/면적(1/Area) 그래프를 확인한다. 여기서 저항은 Data 탭의 Brass Wires 표에 기록된 값이며, 단면적은 황동 철사의 직경을 이용하여 계산한 값이다.

